Reconstruction of groupoids and C⁎-rigidity of dynamical systems
نویسندگان
چکیده
We show how to construct a graded locally compact Hausdorff \'etale groupoid from C*-algebra carrying coaction of discrete group, together with suitable abelian subalgebra. call this the extended Weyl groupoid. When is trivial and subalgebra Cartan, our agrees Renault's prove that if G second-countable grading interior trivially isotropy torsion free, then its reduced isomorphic as G. In particular, two such groupoids are only there an equivariant diagonal-preserving isomorphism their C*-algebras. introduce equivalence groupoids, establish in which has torsion-free equivalent Morita between use these results rigidity for number classes dynamical systems, including all actions natural numbers by local homeomorphisms spaces.
منابع مشابه
jordan c-dynamical systems
in the first chapter we study the necessary background of structure of commutators of operators and show what the commutator of two operators on a separable hilbert space looks like. in the second chapter we study basic property of jb and jb-algebras, jc and jc-algebras. the purpose of this chapter is to describe derivations of reversible jc-algebras in term of derivations of b (h) which are we...
15 صفحه اولProperty (T) for C*-dynamical systems
In this paper, we introduce a notion of property (T) for a C<span style="font-family: txsy; font-size: 7pt; color: #000000; font-style: norm...
متن کاملinvestigation of single-user and multi-user detection methods in mc-cdma systems and comparison of their performances
در این پایان نامه به بررسی روش های آشکارسازی در سیستم های mc-cdma می پردازیم. با توجه به ماهیت آشکارسازی در این سیستم ها، تکنیک های آشکارسازی را می توان به دو دسته ی اصلی تقسیم نمود: آشکارسازی سیگنال ارسالی یک کاربر مطلوب بدون در نظر گرفتن اطلاعاتی در مورد سایر کاربران تداخل کننده که از آن ها به عنوان آشکارساز های تک کاربره یاد می شود و همچنین آشکارسازی سیگنال ارسالی همه ی کاربران فعال موجود در...
observational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2021
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2021.107923